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Abstract

Introduction: Identification of novel therapeutics and risk assessment in early stages

of Alzheimer’s disease (AD) is a crucial aspect of addressing this complex disease. We

characterized gene-expression patterns at the mild cognitive impairment (MCI) stage

to identify criticalmRNAmeasures andgeneclusters associatedwithADpathogenesis.

Methods:We used a transcriptomics approach, integrating magnetic resonance imag-

ing (MRI) and peripheral blood-based gene expression data using persistent homology

(PH) followed by kernel-based clustering.

Results:We identified three clusters of genes significantly associatedwith diagnosis of

amnestic MCI. The biological processes associated with each cluster were mitochon-

drial function, NF-kB signaling, and apoptosis. Cluster-level associations with cortical

thickness displayed canonical AD-like patterns. Driver genes from clusters were also

validated in an external dataset for prediction of amyloidosis and clinical diagnosis.

Discussion:We found a disease-relevant transcriptomic signature sensitive to prodro-

mal AD and identified a subset of potential therapeutic targets associated with AD

pathogenesis.
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1 INTRODUCTION

The prodromal stages of Alzheimer’s disease (AD) can provide an

essential window in which disease-modifying and preventative inter-

ventions can be maximally effective. Currently established biomark-

ers like positron emission tomography (PET), amyloid imaging and

cerebrospinal fluid (CSF) tau/amyloid beta (Aβ) are expensive and/or

invasive. Structural imaging biomarkers while less expensive are non-

specific. Blood-based biomarkers are important because they repre-

sent a less invasive and potentially cheaper approach for aiding AD

detection and therapeutic discovery.
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For a late-life complex multifactorial disease such as AD, with both

genetic and environmental factors involved, integratingmultiple layers

of genetic, imaging, and other biomarker data is a critical step in iden-

tifying distinct pathogenic profiles and uncovering novel dysregulated

pathways/biological processes for therapeutics. Additionally, the ben-

efit from biomarker-driven risk assessment tools lies in eliminating the

need for decisions based solely on clinical parameters, especially dur-

ing the latent stages of AD in which clinical manifestation is inconclu-

sive. Currently, biomarkers are the only feasible approach for identify-

ing and estimating disease-related traits in early stages of AD when a

therapeutic intervention can achieve its greatest impact.
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Evidence for a genetic component in neurodegenerative disorders

like AD is overwhelming. Autosomal dominant pathogenic mutations

in APP, PSEN1, and PSEN2 are identified in only ≈6% of patients,1

accounting for a small portion of AD patients. At least 21 additional

genetic risk loci have been identified for the genetically complex spo-

radic form of AD in genome-wide association studies (GWAS) andmas-

siveparallel resequencing (MPS) efforts.2,3 These studies re-emphasize

the multifactorial nature of AD. Emerging data suggest that periph-

eral blood may provide a suitable surrogate for gene expression pat-

terns identified in the central nervous system (CNS). Peripheral blood

microarray studies have successfully identified candidate genes for

Parkinson’s disease—another common neurodegenerative disorder in

the elderly that, likeAD, is caused bymisfolding and deposition of aber-

rant protein species.4 In addition, systematic evaluation of comparabil-

ity of gene expression in blood and brain has shown that whole-blood

gene expression profile shares significant similarities with that of CNS

tissues.4 In contrast to DNA sequencing transcriptomics, the study of

gene expression profiles informs not only about inherited but also non-

inherited genomic signals.4 Microarray and RNA-sequencing based

transcriptome studies of post mortem brains of AD and control subjects

have identified differentially expressed genes, yielding a core set of

differentially expressed pathways including immune response, apopto-

sis, cell proliferation, energy metabolism, and synaptic transmission.5,6

Pathways involved in inflammation, DNA damage response, cell cycle

and neuronal homeostasis were found to be dysregulated in periph-

eral blood.7 Several studies have shown that an AD-specific mRNA

signature that differentiates AD from cognitively normal (CN) con-

trols can be detected in peripheral blood.8,9 There is still a wide gap

of knowledge on transcriptomic profiling for risk analysis and how it

may, in conjunction with other cognitive, imaging and blood biomark-

ers, inform predictive modeling and therapeutic development. In the

following analyses, we aimed to identify relevant transcriptomic signa-

tures sensitive to cortical atrophy and amnestic MCI diagnosis. These

signatures consist of a limited number of critically important RNAmea-

sures that capture early disease specificity, while minimizing noise and

tissue level variability.

We applied a transcriptomics approach integrating genetic and neu-

roimaging data using an appliedmathematical tool known as persistent

homology (PH) followed by a statistical kernel-based clustering. We

further investigated the driver genes for variants or single nucleotide

polymorphisms (SNPs), which have significant association with amnes-

ticMCI diagnosis. The clustering solution and genes obtained from our

novel pipeline were further validated in an external dataset derived

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI).

2 METHODS

2.1 Dataset

Our discovery sample included 160 subjects from the Imaging and

Genetic Biomarkers of Alzheimer’s Disease (ImaGene) studywhowere

clinically diagnosed as either (1) MCI (N = 108) or (2) CN (N = 52).

The MCI group was further divided into those presenting with amnes-

RESEARCH INCONTEXT

Systematic review: The authors reviewed the literature

using traditional sources. Blood biomarkers is an important

area of Alzheimer’s disease (AD) research. While there is a

breadth of research on utility of blood and serum biomark-

ers, there are someaspects of transcriptomicdata fromblood

that are yet to be addressed, specificallywith respect to brain

atrophy andmild cognitive impairment.

Interpretation: Our methods combined neuroimaging mark-

ers with transcriptomic data to identify clusters of genes and

driver genes associatedwithprodromalADusing anovel per-

sistent homology pipeline followed by kernel-based cluster-

ing. The findings from our results were validated in an exter-

nal dataset.

Future directions: Peripheral blood transcriptomic data at

earlier stages of AD can be used to identify and screen for

multiple novel therapeutic targets and as a preliminary risk

assessment/prognostic tool. It can also lead to better under-

standing of critical disease-related pathways and pathogenic

mechanisms.

ticMCI (aMCI, N= 70) or those presentingwith the non-amnestic phe-

notype (naMCI, N= 38; Tables 1).

2.1.1 Imaging

Thedetailed imagingprotocol has beenpreviously published.10 All sub-

jects received annual 1.5 T magnetic resonance imaging (MRI) scans

following the University of California Los Angeles Alzheimer’s Disease

Research Center protocol consisting of coronal Fl3 D T1MPRAGE: TR

28, TE 4.5, FOV 22 cm, matrix 256 × 192, slice/gap 1.5/0mm. Mea-

sures of neurodegeneration were obtained from coronal T1-weighted

MPRAGE sequences. Scans were processed using the FreeSurfer (ver-

sion6.0) longitudinal pipeline, to obtain region-specific and globalmea-

sures of atrophy.10

2.1.2 Microarray-based gene expression

All subjects provided yearly peripheral blood RNA. Total RNA was

extracted using the PAXgene blood RNA kit (Qiagen). Total RNA

(200ng) was amplified, labeled, and hybridized on Illumina Human

BeadChips, querying the expression of≈24KRefSeq-curated gene tar-

gets. Slides were processed and scanned with Illumina BeadStation

platform. Raw data were collected, loaded in the statistical software R,

and log transformed. Poor-quality arrays were excluded from further

analyses. Data were normalized using quantile normalization. mRNA

levels were log2-transfomed.

All subjects provided DNA at baseline. DNA was labeled, frag-

mented, and hybridized on Illumina IM chips according to Illumina

instructions. The Illumina 1 M SNP array assays 1.2 mln markers
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TABLE 1 ImaGene demographics

VariableMean (std)

NC

(n= 52)

AmnesticMCI

(n= 70)

Non-amnesticMCI

(n= 38) P-value

Age, years 69.0 (7.9) 69.8 (8.5) 69.8 (8.5) .9

Education, years 17.6 (2.04) 15.5 (2.7) 16.5 (2.88) .001*

Sex (M/F) 30/21 26/43 20/18 n.s

MMSE 28.8 (1.2) 27.0 (2.5) 27.9 (1.9) <.001*

Hippocampal vol (mm3) 8602 (1092) 7990 (1324) 8718 (1023) .002*

per sample, including >100,000 copy number variants, providing the

highest genotyping density available on the market. Arrays were

scanned using Illumina iScan equipment. Proprietary software perfor-

mance was compared to new segmentation methods available within

the Bioconductor project (“affyio” and “oligo” packages) showing

improved calling performance over the Illumina software. Low-

confidence calls and SNPs not in Hardy-Weinberg equilibrium were

excluded from further analyses. We have already imputed all missing

genotypes using MACH and minimac in a two-stage procedure using

the 1000 Genomes project pilot data as a reference panel for inferring

missing genotypes. Minimac yielded the posterior probabilities of

the imputed genotypes at un-genotyped marker loci for everyone. r2

value equal to 0.30 was set as the threshold to accept each imputed

genotype.

2.2 Preliminary data reduction

To reduce noise and find endophenotype-specific transcriptomic data

from blood, we performed an initial data-reduction step by select-

ing transcripts significantly associated with both hippocampal volume

and average cortical thickness. A simple linear regression model was

applied to each of the 25,000 transcriptswith hippocampal volume and

cortical thickness as the outcome variable to select the unique union of

transcripts thatwere significantly (P< .05) associated tobothneurode-

generationmeasures.

2.3 Univariate surface mapping

An average surface was constructed by computing the Talairach coor-

dinates at each vertex for each subject.11 The scans were then aver-

aged using FreeSurfer6.0. Vertex-wise regressions for each of the tran-

scripts was performed using age, sex, and education as covariates to

map the association of the gene expression value with average corti-

cal thickness using aMATLAB toolbox SurfStat.12 The beta coefficients

were used for the persistent homology pipeline.

2.4 Persistent homology

The topological method known as PH builds a data-driven coarse

descriptor of aweighteddiscretized surfacewhile retainingmeaningful

geometric information.13 We analyzed the SurfStat triangular meshes

using PH to characterize each map through the evolution of homo-

logical features (Figure 1A) across increasing vertex-wise thresholds.

Vertices were normalized between [0,1] across all 3420 cortical genes

maps. The PH algorithm analyzes the mesh and adds a triangle when

all tree vertices have weight below or equal to the threshold. As the

thresholds increase, topological features of the surface (components

and holes) appear. These features can disappear either bymergingwith

older ones in the case of components, or by being filled up in the case

of holes. The birth and death of each feature and the number of fea-

tures characterize the shape and intensity of themap. This information

can be summarized in Betti curves, which represent the number of fea-

tures present at different threshold values. The Betti curves are indica-

tive of the global distribution of the beta coefficients along the cortical

surface. To compare and cluster the maps, we computed the Manhat-

tandistance14 betweeneachpair ofBetti curves. Thedistancebetween

two Betti curves is then the difference in number of features (compo-

nentsor cycles) across all thresholds (Figure2B). Twodistancematrices

were built, one for each dimension of the features under study (com-

ponents and holes), representing pairwise similarity or dissimilarity in

homological features between the cortical genemaps.

2.5 Unsupervised kernel clustering

Multiple kernel learning is an established framework for representa-

tion and integration of different modalities of data, including vectors,

strings, graphs, and topological features.15 PHcanbe fit into the frame-

work via the mathematical representation of kernel matrices.16 Based

on the Betti curve differences, we built Laplace radial basis kernels

representing pairwise similarity in homological features between the

association pattern of genes and cortical thickness. We then applied

a kernel spectral clustering algorithm from the kernelab package in

R.17 This clustering algorithmwas applied to the components distance

matrix only. To choose the optimumnumber of clusters, we applied two

methods—the elbowmethod and the silhouette analysis—for choosing

the number of clusters.

2.6 Cluster analysis

To identify disease-relevant clusters, we performed principal compo-

nent decomposition on each cluster to represent the cluster by its first
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F IGURE 1 Overview of analyses pipeline. PCA, principal component analysis

principal component or the “eigen-gene” representing the set of genes

in that cluster.18 The eigen-gene represents a data vector of values

that summarizes the gene expression values within a given cluster for

a given participant. These individual eigen-gene values were used to

identify clusters that were differentially expressed in aMCI versus CN

pooled with naMCI (two-sample t-test). Assumption for normality was

verified for the t-tests. We compared the aMCI group to the combined

naMCI and CN group as there were no significant differences between

naMCI and CN (one-way analysis of variance, P > .05). False discovery

rate (FDR) correction was applied to identify significant clusters that

survived multiple testing correction and had differential expression at

the cluster level between diagnostic groups. For validation, we per-

muted a null model with random assignment of cluster number while

maintaining cluster size and distribution for 1000 iterations and calcu-

lated the number of significant clusters (two-sample t-test, Pfdr < .05)

for each iteration followed by FDR correction.

2.7 Gene enrichment analysis and driver
genes identification

Gene enrichment analysis was performed using the topGO package in

R using theweight01 algorithm.19 P-values computed by two-sample t-

test comparing aMCI versus the grouped CN and naMCI subjects were

used as scores for the Gene Ontology (GO) analysis to select the most

disease relevant biological processes associated with the cluster of

genes. From the disease-relevant clusters, driver geneswere identified

by performing differential expression analysis within clusters followed

byFDRcorrection. TheREVIGOtoolwas used to visualize the enriched

biological processes. REVIGO summarizes long GO lists by reducing

functional redundancies and visualizes the remaining GO terms in

two-dimensional plots and semantic similarity measures between GO

terms are calculated based on pre-established methods.20 The GO

terms from the gene enrichment analysiswere provided toREVIGO for
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F IGURE 2 Persistent homology pipeline representation with one gene. A, The filtration obtained from the cortical map relative to gene
ZMYND11. For increasing threshold values (on the x-axis), we record the appearance of topological features of the surface (individual components
and holes) andwhen these features disappear either bymerging with older ones in the case of individual components or being filled up in the case
of holes.We can represent each feature as a horizontal bar whose extreme points are the birth and death of each filtration value a-b. Moreover, we
can count the number of features present as we increase the threshold value. This gives us a Betti curve indicative of the global distribution of Beta
values along the cortical surface. B, Distancematrices: Manhattan distancematrix for the Betti curves with genes sorted according to cluster
labels for genes

visualization of enriched processes. The driver genes were further

investigated for role and function in AD pathology.

2.8 Cluster-level associations

Using the “eigen-gene” approach and vertex-wise regressionswith cor-

tical thickness in SurfStat, we investigated cluster-level associations

with cortical thickness to identify patterns or region-specific presen-

tation of cortical atrophy.

2.9 Variant analyses in driver genes

We used the tool MAGMA (multi-marker analysis of genomic

annotation)21 to analyze variants in the driver genes. The gene analysis
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TABLE 2 ADNI demographics

VariableMean

(std)

CN

(n= 154)

EMCI

(n= 215)

LMCI

(n= 104)

AD

(n= 42) P-value

Age, years 73.7 (6.01) 71.0 (7.44) 72.0 (7.37) 75.3 (9.37) .0001*

Sex (M/F) 72/82 115/100 57/47 25/17 n.s

MMSE 29.0 (1.21) 28.3 (1.49) 27.6 (1.76) 22.9 (1.92) < .0001*

AV45 SUVR 1.11 (0.19) 1.16 (0.21) 1.27 (0.23) 1.39 (0.22) < .0001*

in MAGMA is based on a multiple linear principal components regres-

sion model, using an F-test to compute the gene–variant–phenotype

P-value. This model first projects the SNP matrix for a gene onto

its principal components (PC), pruning away PCs with very small

eigenvalues, and then uses those PCs as predictors for the phenotype

in the linear regressionmodel.We first annotated the SNPs onto genes

using the imputed raw genotype data for our cohort and conducted a

gene-level analysis step to compute associations between SNPs in the

driver genes and the aMCI phenotype.

2.10 Validation in an external dataset

The clusters or sets of genes obtained through our pipelines were

validated in an external dataset consisting of MRI, gene expression

(specific transcripts used for the discovery analysis), demographic,

and amyloid PET data. We identified 515 subjects from the ADNI

study22 with the required overlapping data types used in our ImaGene

discovery datasets (Table 2). Data used in the preparation of this

article were obtained from the ADNI database (adni.loni.usc.edu).

Pre-processed data were downloaded wherein processing for mRNA

values and neuroimaging analyses were performed according to ADNI

protocol.23 The gene expressiondatawas quantile normalized and log2

transformed. We applied a logistic regression classification (with age

and sex as covariates) for amyloid positivity and clinical diagnosis using

the driver genes identified from our analyses in the ADNI dataset.

Amyloid positivity was predicted using a logistic regression model

positivity (florbetapir standardized uptake value ratio [SUVR] > 1.11

in ADNI and flutemetamol SUVR > 1.17 in ImaGENE). These cut-offs

for florbetapir and flutemetamol24 have been established according

to previously published data.We also analyzed the FreeSurfer-derived

values for average cortical thickness, average inferior temporal thick-

ness, and average parietal thickness available in the ADNI dataset and

their association with the significant gene clusters identified in our

discovery dataset.

3 RESULTS

3.1 Subject demographics and identification of
gene set

The three diagnostic groups had no significant difference in mean age

and sex distribution. Therewas a significant difference inmeannumber

of years of education, Mini-Mental State Examination and hippocam-

pal volume (P < .05; Table 1). Using a simple linear model, we identi-

fied 3420 genes from≈25,000 transcripts that were significantly asso-

ciated with both hippocampal volume and cortical thickness mapped

onto the group average cortical thickness using vertex-wise regression

with age, sex, and education as covariates to obtain Betti distances

from PH.

3.2 Cluster analysis and significant clusters

We obtained an optimal clustering solution of 20 clusters from the

elbow and silhouette analysis. Figure 3A shows the representation

of the 20-cluster solution. We identified three clusters significantly

associated with disease diagnosis post–FDR correction (two-sample t-

test, P < .05)—cluster-5, cluster-14, and cluster-20. For the null model

validation, 1000 iterations yielded our three-cluster solution outside

the 95% confidence interval post–FDR correction (two-sample t-test,

Pfdr < .05), which provides convincing evidence of the presence of the

three clusters having significant biological relevance and being sensi-

tive todiseasediagnosis. Cluster5 consistedof118genes, ofwhich two

geneswere differentially expressed (Pfdr< .05). Cluster 14 consisted of

255 genes, of which 53 were differentially expressed (Pfdr< .05) and

cluster 20 consisted of 157 genes, of which two were differentially

expressed (Pfdr< .05). All 3420 genes along with their clustering solu-

tion are summarized File S1 in supporting information.

3.3 Biological processes associated with clusters
and driver genes

The gene enrichment analysis identified the overrepresented biolog-

ical pathways in the significant clusters based on the P-values from

the differential expression. Gene enrichment results using differen-

tially expressed genes are summarized in Table S1 in supporting info-

ration. Positive regulation of apoptotic processes and cell proliferation

were the most significant biological processes associated with cluster

5 (Figure 3B). Driver gene analysis yielded two differentially expressed

cluster-5 genes, SPINK6 (serine peptidase inhibitor Kazal type 6) and

ZMYND11 (zinc finger MYND-type containing 11; Pfdr< .05). Cluster-

14 was associated with NF-kB signaling pathway (Figure 3C). There

were 53 differentially expressed genes in the cluster. For cluster-20,

the main overrepresented pathway was cellular response to retinoic
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F IGURE 3 A, Visualization of 20 cluster solution. Three clusters were significantly associated with amnestic mild cognitive impairment
diagnosis post–false discovery rate correction; cluster-5,-14, and -20. Gene enrichment analysis with significant over-represented pathways in
(B) cluster-5, (C) cluster-14, and (D) cluster-20. Blue and green bubbles are GeneOntology (GO) termswithmore significant P-values than the
orange and red bubbles. The bubbles’ x and y coordinates were derived by applyingmultidimensional scaling to amatrix of the GO terms’ semantic
similarities; consequently, their closeness on the plot should closely reflect their closeness in the GO graph structure that is, the semantic similarity

acid and mitochondrial respiratory chain complex processes (Fig-

ure 3D). Gene enrichment results with the top 10 enriched biological

pathways using all genes within the significant clusters are summa-

rized in Table S2 in supporting information. Figure 4 represents gene

networks of the significant clusters with nodes grouped by top over-

represented biological processes based on the GO analyses. GO anal-

yses using all genes in the cluster yielded “activation of GTPase activ-

ity,” as the significantly overrepresented pathway for cluster-5. For

cluster-14, significant biological processes were “positive regulation

of translation” and “chaperone-mediated protein complex assembly”

and for cluster-20, “transmembrane transport,” “cellular response to

interleukin-1,” and “cellular response to tumor necrosis factor” (Table

S2). All 57 driver genes were downregulated in aMCI. The driver genes

and their fold change are summarized in Table 3. The molecular signa-

ture for the driver gene expression data is shown in Figure 5. In the

ImaGene sample, the aMCI group shows a marked downregulation

of the driver genes compared to normal controls and naMCI (Fig-

ure 5A). In the ADNI sample, the lateMCI andAD groups show reason-

able under expression of the driver genes compared to the other two

groups—CNand earlyMCI—but this differencewas not as pronounced

as it was in the ImaGene sample (Figure 5B).

3.4 Cluster-level associations

SurfStat mapping of cluster-level associations with cortical thickness

showed AD-like patterns (Figure 6).25 All three clusters showed nega-

tive association with cortical thickness in the medial, inferior, and lat-

eral temporal; the precuneus; posterior cingulate; lateral parietal; and

the frontal lobes. These were most significant for cluster-5 (regulation

of apoptotic processes and cell proliferation) and least significant for

cluster-14 (NF-kB signaling pathway).

3.5 Variant analyses

We identified two driver genes, ARMC10 and KIAA1468, from the 57

driver genes with SNPs significantly associated with aMCI in our sam-

ple. Forty-seven SNPs were annotated to the ARMC10 gene on chro-

mosome 7, which had a significant association to aMCI phenotypewith

P-value of .02 and Z-statistic 1.998. For KIAA1468 on chromosome 18,

537 SNPs were annotated to the gene, which had a significant asso-

ciation to aMCI phenotype with P-value .04 and Z statistic 1.697. The

results from the MAGMA variant analyses are summarized in Table 4.
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F IGURE 4 Gene clusters visualizing nodes and relevant biological processes. The top enriched biological processes obtained through gene
ontology analyses and the gene nodes in the cluster represented for A) Cluster-5 B) Cluster-20 and C) Cluster-14

We further investigated the association of individual SNPs within the

genes to disease phenotype using PLINK26 GWAS tools but none of the

individual SNPs had a significant genome-wide association post–FDR

correction.

3.6 Validation in ADNI

Our logistic regression model (with age and sex as covariates) to pre-

dict amyloid positivity using the driver gene transcripts yielded an area

under the curve (AUC) of 0.74 in ADNI and 0.73 in ImaGene (Fig-

ure 7A). Our logistic regressionmodel to predict aMCI or AD diagnosis

in ADNI produced an AUC of 0.71 and 0.78, respectively (Figure 7B).

Cluster-5 and cluster-20 were significantly associated with average

cortical thickness, inferior temporal thickness (Figures 7C–7D), and

inferior parietal thickness in the ADNI dataset (P < .05, data not

shown).

4 DISCUSSION

The need for a cost-effective first step in a multistage diagnostic

framework in AD is an integral part of biomarker development in AD

research. With the evidence being what it is about the multifactorial

nature of AD, multiple therapeutic targets need to be identified and

testedwith respect to thevariousphenotypicmanifestationsof thedis-

ease. While there are many highly sensitive plasma and fluid biological

markers that have shown promising results in predictive and prognos-

tic models, mRNA measures can be critical and add to this paradigm

because they are directly correlated to physiological changes and have
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TABLE 3 Identified driver genes and their foldchange (controls vs.
aMCI)

Downregulated in amnesticMCI

Driver-gene foldchange Pfdr

AGPS −0.012 0.009

AP4E1 −0.013 < 0.001

ARID4B −0.013 0.007

ARMC10 −0.018 0.001

B3GNT2 −0.017 < 0.001

BCAP29 −0.017 0

C6orf111 −0.021 < 0.001

CAB39 −0.016 0.004

CAMSAP1 −0.013 < 0.001

CASC4 −0.013 0.001

CKS2 −0.016 0.005

COQ2 −0.015 0.005

DDX1 −0.014 0.007

DERL1 −0.015 0.002

DNAJA2 −0.014 0.006

DYNC1LI2 −0.009 0.009

FAM3C −0.017 < 0.001

FASTKD3 −0.014 < 0.001

HMGCS1 −0.016 0.001

HNRPK −0.021 < 0.001

HSD17B4 −0.011 0.004

HSZFP36 −0.013 0.004

IDH1 −0.012 0.004

INSIG2 −0.016 0.003

KIAA1468 −0.02 0.004

KIAA1826 −0.022 < 0.001

LASS6 −0.015 0.006

MATR3 −0.011 0.011

NDFIP1 −0.017 0.004

PAPD4 −0.016 0.009

PPP1R2 −0.017 0.007

PRDM10 −0.014 0.001

RASA1 −0.019 < 0.001

RFWD2 −0.013 0.002

ROCK1 −0.016 0.012

RPS6KB1 −0.017 0.005

SCAMP1 −0.02 0.001

SLC22A5 −0.014 < 0.001

SLC25A43 −0.013 0.006

SLC44A1 −0.016 0.006

SMAD4 −0.017 0.002

SNX4 −0.019 < 0.001

SPINK6 −0.007 < 0.001

(Continues)

TABLE 3 (Continued)

Downregulated in amnesticMCI

Driver-gene foldchange Pfdr

SSR1 −0.013 0.006

TAF4 −0.019 < 0.001

TBC1D15 −0.02 0.001

TBCE −0.015 0.002

THAP1 −0.015 0.003

THOC3 −0.016 0.006

TICAM2 −0.013 0.005

TMEM144 −0.012 0.006

UPRT −0.018 < 0.001

VAMP7 −0.015 0.005

VPS26A −0.014 0.007

ZDHHC17 −0.02 0.001

ZMYND11 −0.008 < 0.001

ZNF654 −0.016 < 0.001

multiple downstream and upstream processes that can be used for

therapeutic intervention and risk assessment/screening.

Using a data-driven approach, we successfully reduced large and

noisy transcriptomic data from peripheral blood to a significantly

smaller gene set specific to neurodegeneration and sensitive to dis-

ease diagnosis. Through our novel pipeline, we identified transcripts

from peripheral blood that are associated with the aMCI phenotype

and can also help in risk prediction for conversion to AD. PH allowed

us to compress in single summary the shape and intensity of each brain

map giving less weight to small fluctuations in the spatial distribution

of the beta coefficient values across the cortex.Moreover, the topolog-

ical summaries are an optimal tool to reduce the redundancies in the

weighted triangular meshes in a way that allowed us to use sophisti-

cated andmemory expensive algorithms in a large gene pool.

We identified many AD-relevant genes and few novel genes that

can potentially be important therapeutic targets. For cluster-5, the

main driver genes identified were ZMYND11 and SPINK6. ZMYND11 is

a protein-coding gene that has been associated with mental retarda-

tion, and autosomal dominant non-syndromic intellectual disability.27

SPINK6 is a Kazal-type serine protease inhibitor that acts on kallikrein

peptidases in the skin. It is a gene associated with keratinization.28 To

date, SPINK6 has not been linked to CNS processes or diseases.

Cluster-14, which was mainly associated with NF-kB signaling, had

53 differentially expressed driver genes. Eighteen of these genes were

found to have a direct relevance in AD pathophysiology. Three of

the driver genes (ROCK1, SMAD4, and RPS6KB1) are associated with

the transforming growth factor beta (TGF-β) signaling pathway (Table
S3 in supporting information). The neuroprotective cytokine TGF-β is
increased in AD and is associated with chronic neuroinflammation,

which is hypothesized to lead to neurodegeneration.29 ROCK1 (Rho-

associated protein kinase 1) is increased in AD and ROCK1 depletion

reduces Aβ levels in the brain.30 SMAD4 regulates TGF-β signaling
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F IGURE 5 Molecular signatures of driver genes across diagnostic groups in (A) ImaGene and (B) Alzheimer’s Disease Neuroimaging Initiative.
Rows represent driver genes and columns represent subjects. Color blocks represent cluster data (row) and diagnosis (column)

F IGURE 6 Cluster association (T-statistic) with cortical thickness (T> 1.96, P< .05): (A) cluster-5, (B) cluster-14, and (C) cluster-20
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TABLE 4 Variant analyses within driver genes

GeneName Chromosome Start (bp) Stop (bp) N-snps Zstat P-value

ARMC10 7 102715174 102740210 46 1.998 .022

KIAA1468 18 59854506 59974355 532 1.697 .044

SNX4 3 125165488 125239058 284 1.464 .071

PAPD4 5 78908243 78982471 262 1.367 .085

ROCK1 18 18529701 18691812 156 1.358 .087

AP4E1 15 51200780 51298097 285 1.265 .102

ZMYND11 10 180405 300577 297 1.093 .137

TICAM2 5 114914339 114952142 95 0.965 .167

DNAJA2 16 46989274 47007625 21 0.946 .172

PPP1R2 3 195241221 195270224 91 0.918 .179

TMEM144 4 159122749 159176439 130 0.811 .208

LASS6 2 169312759 169631644 1210 0.775 .219

IDH1 2 209100951 209120478 54 0.772 .220

DERL1 8 124025404 124054663 94 0.766 .221

CAMSAP1 9 138700333 138799060 220 0.725 .234

PRDM10 11 129769601 129872730 411 0.677 .249

C6orf111 6 99846534 99873263 69 0.667 .252

DDX1 2 15731745 15771235 139 0.646 .259

CKS2 9 91926113 91931618 24 0.516 .302

ZNF654 3 88108394 88193814 257 0.510 .305

ZDHHC17 12 77157854 77247481 379 0.470 .319

NDFIP1 5 141488324 141534008 206 0.465 .321

VPS26A 10 70883908 70932617 159 0.318 .371

RPS6KB1 17 57970407 58027787 120 0.232 .408

SPINK6 5 147582357 147594700 47 0.198 .421

RFWD2 1 175913967 176176386 804 0.196 .422

CAB39 2 231577557 231685790 335 0.188 .425

THAP1 8 42691817 42698474 13 0.159 .436

SLC22A5 5 131705396 131731306 128 0.102 .459

SMAD4 18 48556583 48611412 123 0.040 .484

FASTKD3 5 7859272 7869150 38 0.014 .494

B3GNT2 2 62423262 62451866 77 0.009 .496

ARID4B 1 235330210 235491532 535 −0.047 .518

THOC3 5 175386534 175395318 1 −0.052 .520

TAF4 20 60549854 60640866 397 −0.133 .553

AGPS 2 178257471 178408564 503 −0.146 .558

MATR3 5 138609441 138667366 95 −0.181 .572

SSR1 6 7281283 7313541 202 −0.204 .581

TBC1D15 12 72233487 72320629 280 −0.352 .637

CASC4 15 44580909 44707959 237 −0.513 .696

INSIG2 2 118846033 118867604 62 −0.517 .694

COQ2 4 84184972 84206067 58 −0.572 .716

TBCE 1 235530728 235612280 333 −0.580 .719

HSD17B4 5 118788138 118878030 419 −0.591 .722

RASA1 5 86564070 86687743 263 −0.591 .722

(Continues)
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TABLE 4 (Continued)

GeneName Chromosome Start (bp) Stop (bp) N-snps Zstat P-value

BCAP29 7 107220422 107263762 111 −0.593 .723

HSZFP36 19 11832080 11849824 61 −0.667 .747

FAM3C 7 120988905 121036422 150 −0.822 .794

SCAMP1 5 77656339 77776562 395 −0.924 .822

DYNC1LI2 16 66754796 66785526 86 −1.033 .849

SLC44A1 9 108006906 108200785 572 −1.142 .873

KIAA1826 11 105878629 105892981 34 −1.302 .903

HNRPK 9 86582998 86595692 37 −1.481 .930

HMGCS1 5 43287572 43313614 79 −2.001 .977

pathway through feedback mechanism.31 Reducing RPS6KB1 expres-

sion has been shown to improve spatial memory and synaptic plasticity

in a mouse model of AD.32 NDFIP1, TICAM2, and ZDHHC17 are associ-

ated with positive regulation of I-kB kinase/NF-kB signaling, which is a

key regulatory mechanism in innate immunity and known to be asso-

ciated with AD pathogenesis. Lower expression of NDFIP1 has been

reported to be associated with AD pathogenesis through decreasing

DMT1 degradation and increasing iron influx.33 TICAM2 is involved in

Toll receptor signaling (TLR4 signaling). TLR4-mediated signaling has

been reported to contribute to the pathogenesis of age-related neu-

rodegenerative diseases, including AD.34 ZDHH17 is a protein coding

gene involved in palmitoylation. Disruption of protein palmitoylation

has been implicated in pathogenesis of neurodegenerative diseases,

including AD,35 Huntington’s disease, schizophrenia, and intellectual

disability. A detailed description of driver genes relevant to neurode-

generation andADalongwith theirmolecular function are summarized

in Table S3.

The driver genes in cluster-20 were FASTKD3 and SLC22A5.

FASTKD3 (Fas-activated serine/threonine kinase domain 3) has been

associated with neural tube defects and disorders of intracellu-

lar cobalamin metabolism.36 FASTKD3 interacts with components

of mitochondrial respiratory and translation machineries.37 A poly-

morphism in the pro-apoptotic gene FASTKD2 (Fas-activated serine/

threonine kinase domains 2; rs7594645-G), a member of the same

family of proteins, has been associated with better memory per-

formance and hippocampus structure in older adults.38 SLC22A5

(solute carrier family 22 member 5) is a gene involved with fatty

acid metabolism in mitochondria.39 It is a well-studied solute car-

rier in the blood–brain barrier that acts upon carnitine, stimulates

the synthesis of acetylcholine, decreases oxidative stress, and pre-

vents neurodegeneration.40 Variant analyses using the driver genes

identified that SNPs within genes ARMC10 and KIAA1468had signifi-

cant association with disease diagnosis. Overexpression of ARMC10 in

neurons has been reported to prevent Aβ-induced mitochondrial fis-

sion and neuronal death.41 KIAA1468(RELCH) regulates intracellular

cholesterol distribution from recycling endosomes.42 Although indi-

vidual SNPs did not survive genome-wide association(Pfdr> .05), fur-

ther studies are warranted in a larger sample size for identification of

disease-relevant variants or expression quantitative trait loci in these

genes. When applied to an external dataset with the same driver gene

data available, we found that our set of genes validated reasonably

well in predicting MCI and AD, and in predicting amyloid positivity.

This is an important finding because external validation of a model’s

predictive performance is extremely crucial to examine reliability and

accuracy of model predictions. It is important to note that historically

many variables found using prediction algorithms do not cross-validate

very well,43 which was not the case here. The ambiguity of identifying

gene transcripts spotted on microarrays based on annotation makes

it harder to cross-reference genes based on gene accession number,

clone identifier, or even the sequence of a complete gene, and probes

on both microarray platforms may hybridize to different gene regions

with different GC content. Therefore, we have limited our validation

in ADNI to a smaller set of transcripts identified from the discovery

dataset that are potentially biologically relevant despite acquisition

methods. In efforts to standardize and improve cross-platform analy-

ses, data harmonization methods that enable meta-analyses of gene

expression data and cross-validation of the entire pipeline in exter-

nal cohorts are warranted as an important future direction of the cur-

rent analyses. While there are obvious challenges when it comes to

dataharmonizationdue tomultiple processingplatformsand standard-

ization issues, important biological markers should validate in exter-

nal datasets. In a recent study using ADNI, AddNeuroMed (ANM1),

and ANM2 data sets, classifiers trained on blood gene expression

only were able to classify AD with AUC of 0.657, 0.874, and 0.804

for ADNI, ANM1, and ANM2, respectively. In the external validation,

the best AUCs were 0.697 (training: ADNI vs. testing: ANM1), 0.764

(training: ADNI vs. testing: ANM2), 0.619 (training: ANM1 vs. test-

ing: ADNI), 0.79 (training: ANM1 vs. testing: ANM2), 0.655 (train-

ing: ANM2 vs. testing: ADNI), and 0.859 (training: ANM2 vs. test-

ing: ANM1), respectively.44 Our analysis incorporating neuroimaging

data yielded more accurate prediction (AUC = 0.73 in ImaGENE and

AUC = 0.74 in ADNI for amyloidosis; AUC = 0.71 and AUC = 0.78 for

MCI and AD prediction in ADNI, respectively).

There have been several other studies that have addressed the

utility of using transcriptomic data from blood. One study aimed at

establishing a five-gene-set signature for classifying normal controls
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F IGURE 7 ROC using driver genes from each significant cluster for ADNI (blue) and ImaGENE (red) for (A) amyloidosis. B, ROC forMCI and
AD diagnosis in ADNI cohort. C, Cluster-level association with average inferior temporal thickness, and (D) average cortical thickness (x-axis: eigen
gene value, y-axis: thickness measure). AD, Alzheimer’s disease; ADNI, Alzheimer’s Disease Neuroimaging Initiative; MCI, mild cognitive
impairment; ROC, receiver operating characteristic

versus MCI and normal controls versus AD based on their differential

expression pattern, using publicly available datasets in Gene Expres-

sion Omnibus. They reported AUCs of 0.47 and 0.5, respectively, for

GSE4229 andGSE85426 in classifying AD versus control using periph-

eral blood mononuclear cells as the RNA source.45 Our gene set has

better classification performance and is also associated with amyloid

and neurodegeneration biomarkers. A recent study conducted ameta-

analysis of gene expression in AD and identified 207 differentially

expressed genes using different AD tissue microarray datasets in the

NCBI_GEO database.46 We found that 22 of the driver genes from our

analyses were also downregulated in the MCI and AD cohorts from

their gene signature set.

Some limitations of the study merit consideration. Considering

recent success of ultrasensitive Aβ and phosphorylated tau plasma

assays,47,48 it is less likely that gene expression data will be clini-

cally useful, but blood gene expression does help us understand criti-

cal peripheral biological pathways associated with AD risk. Given the

smaller sample size (N = 160) of our discovery dataset, we have vali-

dated the driver genes and clusters in a larger external dataset (ADNI,

N = 515) with reasonable success, but to build more robust predic-

tivemodels and screen for targets, the genes identified fromour analy-

sis warrant further investigation for potential roles in diagnostic pre-

diction algorithms and as therapeutic targets through experimental

validation.

Overall, our analysis has contributed to identification of gene

expression biomarkers associated with baseline diagnosis of MCI

and future conversion to AD dementia and aided in improvement

of our understanding of critical disease-related pathways and sys-

tematic changes that occur in prodromal AD using blood-based

biomarkers.
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